3. Заполните таблицу.
Делимое |
Делитель |
Неполное частное |
Остаток |
25 |
3 | ||
19 |
3 | ||
50 |
8 |
4 | |
11 |
11 |
5 |
Творческое задание.
1. Придумайте многочлен (не меньше третьей степени). Составьте для него схему Горнера. Найдите целые и дробные корни многочлена или докажите, что их нет.
2. Придумайте:
а) многочлен, имеющий четыре целых корня.
б) многочлен, имеющий четыре различных целых корня.
в) многочлен, имеющий два целых корня и два дробных корня.
г) многочлен третьей степени, имеющий только один корень.
д) многочлен четвертой степени, имеющий пять корней.
Здесь приведена система упражнений, рекомендуемая для закрепления материала, выделены основные типы задач.
- Типы задач необходимые при изучении темы теорема Безу.
1. Задачи на составление (заполнение) схемы Горнера.
2. Задачи на применение схемы Горнера.
3. Задачи на нахождение делителей числа (многочлена). (Пропедевтическая)
4. Задачи на нахождение целых корней многочлена с целыми коэффициентами.
5. Задачи на нахождение рациональных корней многочлена с целыми коэффициентами.
6. Задачи на деление с остатком двух чисел. (Пропедевтическая)
7. Задачи на деление многочлена на многочлен.
8. Задачи на разложение многочлена на множители.
9. Задачи на решение уравнений (с помощью теоремы Безу).
А также задачи трудные задачи.
Схема Горнера.
1. Проверьте правильность заполнения первой строки схемы Горнера для многочлена:
а) f(x) = 3x4 + 2x3 + 15x2 – x – 1
3 |
2 |
15 |
-1 |
-1 | |
б) f(x) = 7x5 - 3x3 + 12x2 – 2x + 13
7 |
-3 |
12 |
-2 |
13 | |
2. Заполните схему Горнера:
2 |
-7 |
3 |
-1 |
3 | |
2 |
Чему равно f(2)?
3. Используя схему Горнера, вычислите значение f(x) = x4 + 3x3 + 2x2 + 1 при с=1;2;3;-1;-2;-4.
4. Определите, какие из чисел ±1; ±2; ±3 являются корнями уравнения:
а) x3 - 6x2 + 11x – 6 = 0;
б) 3x5 - 2x4 + 19x3 – 5x2 – x – 6 = 0.
5. Восстановите схему Горнера, заполнив пустые клетки:
а)
1 |
1 |
2 |
-1 |
-2 |
-3 |
б)
1 |
-1 |
-2 |
0 |
1 | ||
2 |
40 |
в)
1 |
0 |
11 |
-7 |
9 | |
12 |
-19 |
Новое о педагогике:
Диагностические методики изучения эмоционального состояния
детей дошкольного возраста
У ребенка рано складывается эмоциональное отношение к близким, которое «окрашивает» его представления о родителях, других членах семьи, о своем доме и т.д. Эти представления во всем их своеобразии могут пролить свет на те стороны семьи, до ...
Проблема развития пространственных представлений у
дошкольников в психологии
Воспроизведение чувственных образов восприятия приводит к возникновению новых своеобразных психических образований – представлений. Представление – это воспроизведённый образ предмета, который – на основе предшествовавшего сенсорного возде ...